Clipped Action Policy Gradient
نویسندگان
چکیده
Many continuous control tasks have bounded action spaces and clip out-of-bound actions before execution. Policy gradient methods often optimize policies as if actions were not clipped. We propose clipped action policy gradient (CAPG) as an alternative policy gradient estimator that exploits the knowledge of actions being clipped to reduce the variance in estimation. We prove that CAPG is unbiased and achieves lower variance than the original estimator that ignores action bounds. Experimental results demonstrate that CAPG generally outperforms the original estimator, indicating its promise as a better policy gradient estimator for continuous control tasks.
منابع مشابه
Revisiting stochastic off-policy action-value gradients
Off-policy stochastic actor-critic methods rely on approximating the stochastic policy gradient in order to derive an optimal policy. One may also derive the optimal policy by approximating the action-value gradient. The use of action-value gradients is desirable as policy improvement occurs along the direction of steepest ascent. This has been studied extensively within the context of natural ...
متن کاملDeterministic Policy Gradient Algorithms
In this paper we consider deterministic policy gradient algorithms for reinforcement learning with continuous actions. The deterministic policy gradient has a particularly appealing form: it is the expected gradient of the action-value function. This simple form means that the deterministic policy gradient can be estimated much more efficiently than the usual stochastic policy gradient. To ensu...
متن کاملExpected Policy Gradients for Reinforcement Learning
We propose expected policy gradients (EPG), which unify stochastic policy gradients (SPG) and deterministic policy gradients (DPG) for reinforcement learning. Inspired by expected sarsa, EPG integrates (or sums) across actions when estimating the gradient, instead of relying only on the action in the sampled trajectory. For continuous action spaces, we first derive a practical result for Gaussi...
متن کاملLocalizing Policy Gradient Estimates to Action Transitions
Function Approximation (FA) representations of the state-action value function Q have been proposed in order to reduce variance in performance gradients estimates, and thereby improve performance of Policy Gradient (PG) reinforcement learning in large continuous domains (e.g., the PIFA algorithm of Sutton et al. (in press)). We show empirically that although PIFA converges significantly faster ...
متن کاملLocalizing Policy Gradient Estimates to Action
Function Approximation (FA) representations of the state-action value function Q have been proposed in order to reduce variance in performance gradients estimates, and thereby improve performance of Policy Gradient (PG) reinforcement learning in large continuous domains (e.g., the PIFA algorithm of Sutton et al. (in press)). We show empirically that although PIFA converges signiicantly faster t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.07564 شماره
صفحات -
تاریخ انتشار 2018